Rabu, 06 Juli 2011

Metoda Penyediaan Sumber Daya DC

Pendahuluan
Dari berbagai ragam barang atau peralatan elektronik yang kita jumpai saat ini, akan kita dapati bahwa hampir semua bagian bagiannya dijalankan oleh sumber tenaga satu arah (DC). Penyediaan sumber tenaga DC tersebut dapat dalam bentuk baterai ataupun sumber daya (power supply) DC yang mana keluaran DC nya tidak hanya harus tersaring (filter) dengan bersih tetapi juga teregulasi dengan baik. Dalam sistim pengubahan daya, terdapat empat jenis proses yang telah dikenal yaitu sistim pengubahan daya AC ke DC, DC ke DC, DC ke AC, dan AC ke AC. Masing masing sistim pengubahan memiliki keunikan aplikasi tersendiri, namun ada dua yang implementasinya kemudian berkembang pesat dan luas yaitu sistim pengubahan AC ke DC (DC power supply) dan DC ke DC (DC-DC converter).
Teknologi penyediaan tenaga DC telah mengalami evolusi selama bertahun tahun dari menggunakan pipa vakum (vacuum tube) yang berukuran besar dan sekaligus berbahaya karena bertegangan tinggi, sampai kepada metoda penyediaan yang memanfaatkan teknologi solid state dengan ukuran yang lebih kecil dan berkapasitas tegangan yang lebih rendah sehingga relatif lebih aman. Lain daripada itu, seperti yang telah disebut sebelumnya, bahwa penyediaan sumber tenaga DC ini memegang peranan yang sangat penting dalam penggunaan barang barang elektronik, maka dari itu peralatan penyedia sumber tenaga DC ini, seperti power supply DC dan pengubah DC-DC (DC-DC converter), menjadi salah satu bidang elektronik yang meraih pasaran yang besar. Tercatat bahwa penjualan power supply DC dan DC-DC converter diseluruh dunia tahun lalu mencapai angka 5 milyar dolar AS . Angka ini akan terus menanjak, seiring dengan bertambahnya konsumen barang barang eletronik dewasa ini maupun dimasa mendatang.
Selanjutnya, perkembangan teknologi penyediaan tenaga DC tidak hanya berkisar pada kemampuan untuk mengurangi atau menambah kapasitas daya serta menurunkan dimensi fisik, tetapi juga pada cara pengolahan daya itu sendiri. Pada mulanya metoda yang digunakan dikenal dengan nama tipe linier (linear mode). Pada sistim pengubahan AC ke DC, tipe linier bercirikan penggunaan kombinasi transformer 50/60Hz yang kemudian dilanjutkan dengan proses penyearah (rectifier), penyaring (filter), dan akhirnya pengatur linier (linear regulator). Oleh karena pengolahan frekuensi 50/60Hz inilah maka tipe linier cenderung menghasilkan alat penyedia daya DC yang relatif besar ukurannya, karena komponen yang dipakai untuk mengolah 50/60 Hz tersebut seperti transformer maupun kapasitornya akan berukuran besar pula. Kemudian lahir tipe ke dua yang dikenal sebagai tipe peralihan atau switching (switching mode), yang tidak hanya menghasilkan penyediaan daya DC yang jauh lebih efisien dari tipe linier, tetapi juga relatif lebih kecil dan ringan ukurannya. Pada tipe switching, strategi yang dipakai adalah dengan menghilangkan proses pengolahan frekuensi 50/60 Hz melalui proses penyearah (rectification) langsung dari voltase masukan, kemudian keluaran dari penyearah tadi mengalami proses pemotongan (chopped) sehingga menghasilkan deretan pulsa yang berfrekuensi (switching frequency) tinggi, sekitar 20 kHz sampai 500 kHz, lalu diteruskan ke transformer yang tentunya juga berfrekuensi tinggi, hingga pada akhirnya ke filter untuk hasil keluaran akhir. Sebagai akibat pengolahan daya melalui frekuensi tinggi inilah maka tipe swtiching menghasilkan produk akhir yang ukuran dan beratnya akan lebih kecil dari tipe linier.

Tipe Linier
Beberapa fungsi yang masuk dalam proses pengubahan daya AC ke DC adalah sebagai berikut:
  • Pengubahan Tegangan atau Voltase, berfungsi untuk mengubah tegangan listrik yang tersedia dari jaringan distribusi transmisi listrik ke level yang diinginkan
  • Penyearah, sebagai pengubah arah tegangan atau voltase dari AC ke DC
  • Filter atau penyaring, bertugas sebagai pembersih gelombang keluaran dari riak (ripple) yang berasal dari proses penyearahan
  • Pengaturan (regulation), bertujuan untuk mengendalikan tegangan keluaran sehingga menjadi stabil walaupun terjadi variasi atau perubahan pada suhu, beban, maupun tegangan masukan dari jaringan transmisi listrik

Idealnya, pengubahan daya ke DC memiliki karateristik seperti misalnya efisiensi 100%, gelombang keluaran yang tetap (constant output) walaupun dihadapkan pada variasi dari voltase transmisi (untuk power supply DC), arus pada beban, maupun suhu. Karakteristik ideal lainnya adalah tidak memiliki impedansi pada terminal keluaran (zero impedance output) untuk setiap jenjang frekuensi, dan juga tidak memiliki gangguan (noise) maupun ripple pada gelombang keluaran. Gambar 1 di bawah ini menunjukkan perbedaan dalam hal pengaturan beban dan ripple pada gelombang keluaran antara pengubah yang ideal dan yang praktis.

Gambar 1. Karakteristik ideal dan praktis pada pengubah ke DC
Selanjutnya, pada Gambar 2 dapat dilihat dua buah contoh rangkaian yang umum dipakai untuk menghasilkan daya DC dari daya AC yaitu rangkaian dengan konfigurasi Center-Tapped Transformer dan Penyearah Bridge (Bridge Rectifier). Kedua contoh tersebut memakai penyearah jenis gelombang penuh (full wave rectifier) yang mengakibatkan tingkatan ripple yang minimum pada gelombang keluaran.
Pada konfigurasi Center-Tapped Transformer, hanya terdapat dua buah dioda didalamnya dan dengan demikian hanya ada satu penjatuhan tegangan (voltage drop) pada dioda disetiap jalur arus dari transformer ke filter kapasitor. Lain halnya dengan konfigurasi Bridge yang menggunakan empat buah dioda, sehingga mengakibatkan dua voltage drop pada dioda disetiap jalur arus dari sisi transformer ke sisi filter. Namun demikian, walaupun Center-Tapped memiliki keuntungan pemakaian komponen yang lebih sedikit, namun setiap dioda paling tidak harus menahan tegangan balik (reverse voltage) yang besarnya dua kali lipat dari pada setiap dioda yang digunakan pada konfigurasi Bridge. Pada Gambar 2 juga terlihat adanya blok yang berisikan pengatur linier (Linear Regulator). Blok tersebut tidak lain berfungsi sebagai pengatur level daya sesuai dengan level yang diminta oleh beban dan secara bersamaan juga menekan tingkat ripple pada gelombang keluaran.

Gambar 2. Dua jenis rangkaian tipe linier

Tipe Peralihan (Switching)

Power Supply tipe switching menjadi semakin populer pemakaiannya karena tipe ini memberikan penyediaan daya DC yang efisiensi dan densitas dayanya sangat tinggi dibandingkan dengan tipe linier. Untuk lebih jelasnya, beberapa perbandingan antara kedua tipe tersebut dapat dilihat pada Tabel 1.


SpesifikasiTipe LinierTipe Switching 
Pengaturan Beban (Load regulation)
Variasi Gelombang Keluaran (Output Ripple)
Variasi Voltase masukan (Input Voltage Range)
Efisiensi
Densitas Daya (Power Density)
Waktu Peralihan (Transient Recovery)
0.02-0.01%
0.5-2 mV rms
+/- 10%
40-55%
0.5 W/in^3
50 usec
0.1-1.0%
25-100 mV p-p
+/- 50%
60-80%
2.3 W/in^3
300 usec
                   Tabel 1. Perbandingan antara tipe Linier dan Switching 



Teknologi penyediaan daya DC melalui tipe switching sebenarnya bukan merupakan hal yang baru. Teknologi tersebut sudah mulai dikembangkan sejak sekitar tahun 60-an dan penggunaannya sangat terbatas pada aplikasi militer dan ruang angkasa karena komponen switch yang masih mahal dan kemampuan dayanya juga terbatas. Namun, karena semakin pesatnya perkembangan teknologi solid state termasuk didalamnya, pembuatan solid state switch, maka kedua halangan tersebut semakin lama semakin berkurang sehingga produksi tipe switching ini pun merembet perkembangannya ke lapangan industri, penelitian, pendidikan dan lain sebagainya.
Dari segi efisiensi, tipe linier tidak begitu baik, karena pada prosesnya hasil keluaran penyearah diturunkan tegangannya melalui pengatur linier (linear regulator), dan selisih antara tegangan yang masuk dan tegangan yang dihasilkan dibuang dalam bentuk panas. Akibat penyerapan panas (pembuangan energi) yang besar dalam proses tipe linier tersebut sehingga efisiensinya pun menjadi kecil. Sedangkan pada tipe switching, perbaikan efisiensi dicapai dengan cara pengaturan medan magnet akibat selisih tegangan masukan dengan keluaran. Pengaturan yang dimaksud berhubungan dengan proses penyimpanan dan pembuangan energi magnet yang mana pada waktu komponen penyimpan energi magnet sampai pada titik energi tertentu, maka switch yang dipakai untuk mengirim daya ke sisi beban dimatikan (off state), dan komponen penyimpan energi magnet tadi kemudian mengambil alih tugas switch untuk mengirim daya yang tersimpan menuju ke sisi beban. Apabila ‘tabungan’ energi magnet tadi hampir habis, maka switch kembali dihidupkan (on state) untuk mengambil alih kembali tugas pengiriman daya ke beban dan secara bersamaan mulai menyimpan kembali energi magnet untuk mengulang proses yang sama.

Gambar 3. Rangkaian dasar Flyback Regulator
Salah satu topologi dari power supply tipe switching adalah dengan metoda flyback (flyback regulator) seperti yang diilustrasikan pada Gambar 3. Pengaturan besarnya daya keluaran melalui komponen switch dikendalikan dengan metoda modulasi lebar pulsa atau PWM (Pulse Width Modulation) dimana semakin lama switch berstatus ON semakin banyak energi yang disimpan dalam transformer dan semakin besar pula daya yang dikirim ke beban. Selain itu, untuk menghasilkan tegangan keluaran yang stabil, maka tegangan tersebut dapat diumpan balik dan dibandingkan dengan tegangan referensi (reference voltage) dan selisihnya kemudian dapat digunakan untuk mengendalikan lamanya switch berstatus ON dan OFF. Pada gambar 4, dapat dilihat konfigurasi lengkap dari metoda Flyback tersebut. Sebutan lain power supply tipe switching adalah tipe "off-line" karena tegangan DC yang menjadi masukan adalah melalui proses penyearah langsung dengan penyearah Bridge dari sisi AC atau dari jaringan listrik dengan tanpa menggunakan transformer 50 atau 60 Hz. Pada rangkaian yang sama juga terlihat adanya sistim umpan balik yang harus terisolasi dari sisi AC dengan menggunakan transformer ukuran kecil ataupun dengan opto-isolator.


Gambar 4. Rangkaian lengkap Flyback Regulator
Banyak power supply dari tipe switching yang memiliki lebih dari satu keluaran. Banyaknya keluaran tersebut akan sangat berguna karena sering kita jumpai bermacam peralatan elektronika seperti halnya dalam sistim komputer yang membutuhkan tegangan atau daya yang berbeda beda untuk bermacam bagian atau komponen didalamnya.


Gambar 5. Rangkaian Flyback dengan keluaran lebih dari satu

Gambar 5 menunjukkan salah satu rangkaian Flyback yang dapat menghasilkan lebih dari satu keluaran. Pada gambar tersebut terlihat bahwa hanya satu keluaran saja yang memiliki umpan balik, sehingga keluaran keluaran yang lain tidak akan begitu teregulasi dengan baik. Masih banyak lagi contoh topologi lainnya yang digunakan untuk penyediaan daya DC baik itu dengan satu atau lebih keluaran seperti misalnya pengubah Forward, Buck, Boost, Cuk, Push-Pull, Full Bridge, Half Bridge, Sepic dan lain lainnya.

Pendistribusian Daya Pada Power Supply

Satu hal yang juga penting dalam implementasi power supply adalah cara pemasangan yang sesuai untuk pendistribusian beban. Salah satu kesalahan umum dalam menghubungkan pengubah daya seperti power supply pada beban terlihat pada gambar 6. Dalam rangkaian paralel seperti ini, tegangan pada satu beban akan bergantung pada arus listrik yang mengalir pada beban lainnya dan putaran DC (DC ground loop) pun terbentuk. Beban nomor 3 akan menerima tegangan yang paling rendah. Konfigurasi seperti ini sedapat mungkin dihindari, kecuali pada aplikasi yang memerlukan arus listrik keluaran yang relatif rendah dimana tegangan yang berkurang karena konduktor yang menghubungi beban tidak begitu berpengaruh.


Gambar 6. Distribusi Paralel
Sebagai alternatif yang lebih baik dari rangkaian paralel adalah rangkaian yang diberi nama Radial seperti pada Gambar 7. Satu pasang terminal positive dan negative pada semua beban dihubungkan dengan kabel langsung dari terminal keluaran pengubah daya. Dengan demikian maka tidak akan terjadi ground loop, dan pengaruh beban satu terhadap beban lainnya akan menjadi kecil.


Gambar 7. Distribusi Radial

Kesimpulan

Dalam memilih sistim pengubah daya baik itu dari daya AC ke DC maupun DC ke DC, pertama kali kita dihadapkan pada pilihan antara tipe linier atau switching. Pilihan mana yang kita ambil tentu saja tergantung dari aplikasi yang akan dibuat dengan batasan atau spesifikasi yang tersedia. Misalnya saja, untuk aplikasi dimana ukuran ataupun berat bukan merupakan hal yang penting, maka tipe linier lah yang paling sesuai karena selain sederhana dalam rancangannya juga sangat baik dalam pengaturan beban dan juga sangat kecil tingkat ripple dan noise pada keluarannya. Namun untuk aplikasi dimana fleksibilitas, dimensi fisik dan efisiensi tinggi sangat berperan seperti misalnya pada aplikasi ruang angkasa, maka tipe switchinglah yang menjadi solusinya.Penelitian dan pengembangan teknologi pengubahan daya, terutama pada tipe switching, masih terus berlangsung dengan aktif sampai saat ini. Hal tersebut bervariasi dari yang bertujuan untuk menghasilkan teknik yang lebih meningkatkan efisiensi, investigasi pengolahan daya yang dapat mengurangi daya yang hilang (power loss) pada komponen switch, penelitian berbagai macam aplikasi sistim pengubah daya, sampai pada pencarian alternatif penggunaan komponen switch yang cepat sehingga dapat meningkatkan kecepatan frekuensi switching. Tambahan lagi, seperti sudah disebut sebelumnya bahwa bisnis peralatan pengubah daya tersebut, saat ini telah mencapai 5 milyar dolar AS pertahunnya dan akan terus meningkat dengan bertambahnya konsumen atau pemakai paralatan elektronika. Oleh karena itu, sangatlah disayangkan jika Indonesia tidak ikut berperan aktif dalam menggunakan peluang yang baik tersebut untuk penelitian, pengembangan, maupun pemasaran teknologi sistim pengubahan daya yang relatif tidak mahal dan tidak sulit untuk diterapkan di Indonesia.

Oleh Taufik 
"Penulis adalah peneliti pada laboratorium Mekatronik dan mahasiswa program S3 teknik Elektro, Cleveland State University, Cleveland, Ohio, USA". On elektroindonesia.com

0 komentar:

Posting Komentar

Silahkan Anda Mengisi Komentar Anda Di bawah ini, Karena komentar Anda Sangat Di Butuhkan Demi Kemajuan Kita Bersama

Twitter Delicious Facebook Digg Stumbleupon Favorites More